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Executive Summary

We describe the development of PRISM (Parameterized Real-time Jonospheric
Specification Model), a global near real-time ionospheric specification model intended for use at
the Air Force Space Forecast Center (AFSFC), also known as the 50® Weather Squadron
(50 WS). We also describe PIM (Parameterized /onospheric Model), the base ionospheric model
which forms the core of PRISM. PIM consists of a semi-analytic representation of a
parameterization of four separate physically based computational models of the ionosphere.
PRISM uses both ground based and space based data to modify or update the PIM ion density
profiles to produce a data driven specification of the state of the ionosphere. At AFSFC PRISM
will provide hourly ionospheric specifications in near real time. PRISM is capable of accepting
and using bottomside electron density profiles produced from automated true height analysis of
digital ionograms, TEC measurements from GPS receivers, satellite based in siru plasma
measurements (electron density, ion composition, electron and ion temperature, and ion drift
velocity), satellite based in situ observations of precipitating electrons and ions in the high latitude
regions, as well as ionospheric parameters derived from observations of airglow and auroral
optical emissions. We describe the construction of PIM, and the real time adjustment process of
PRISM, as implemented in Version 1.5. This is the version that will become operational at

AFSFC in the fall of 1995.




1. INTRODUCTION

We have developed a Parameterized Real-time Ionospheric Specification Model (PRISM)
for the Air Force Air Weather Service (AFAWS) for use at the Air Force Space Forecast Center
(AFSEC, also known as the 50" Weather Squadron). The model uses both ground based and
space based data available in near real time to modify a Parameterized Ionospheric Model (PIM)
and thus provide a near real-time specification of the ionosphere. PIM is a composite of diurnally
reproducible runs of several physical ionospheric models: (1) the Time Dependent Ionospheric
Model (TDIM) of Utah State University (USU) [Schunk, 1988], (2) the low latitude F-region
model (LOWLAT) developed by Anderson [1973], (3) the midlatitude version of LOWLAT
(called MIDLAT) developed by D. N. Anderson and modified by D. T. Decker, and (4) an E-
region local chemistry code developed by D. T. Decker and incorporating photoelectrons using
the continuous slowing down method [Jasperse, 1982].

Both PIM and PRISM can produce either regional or global output. The output grid of
latitude and longitude (which may be either geographic or geomagnetic) is user selectable. At
AFSFC the standard PRISM output is a global grid with 1° latitude spacing and 5° longitude
spacing. Profile parameters (f F,, h F,, TEC, etc.), or complete electron density profiles, or both
may be output to the specified grid.

PRISM has been delivered to the AFAWS and is presently undergoing transition to
operational code. PIM is in the public domain and is available for distribution to the ionospheric
community. PRISM is also available to the research community upon application to the AFAWS.
PIM has been distributed to about 60 users worldwide. PRISM is in use by three research groups
in the United States.




1.1 Objectives
Our primary objective was the development of an algorithm for using near real time

- satellite and ground based data to provide a near real time specification of the global ionosphere.

The data to be used include

(1) bottomside digital soundings from the AFAWS Digital Ionospheric Sounding System (DISS),

(2) Total Electron Content (TEC) data from the AFAWS Transionospheric Sensing System (TISS),

(3) in situ plasma data (densities, temperatures, and drift velocities) from the SSIES instrument on
DMSP satellites,

(4) auroral electron and ion fluxes from the SSJ/4 instrument on DMSP satellites, and

(5) electron density profile information deduced from observations of airglow and auroral optical

emissions by instruments (SSUSI and SSULI) expected to be flown on future DMSP satellites.

The need for a global specification of the state of the ionosphere is twofold. First, there
are operational systems that need to correct for ionospheric effects in real time, or that have
operational parameters that are affected by the ionosphere and must be adjusted in near real time.
Second, the operation of many systems could be optimized if accurate forecasts of ionospheric
conditions were available because this allows the operational parameters to be chosen ahead of
time. Any ionospheric forecast algorithm will require an accurate specification of the current state
of the ionosphere as an initial condition, which PRISM provides.

In addition to real time needs, many system operators need post-event analysis to
determine whether operational problems or outages were caused by system problems or by

environmental conditions. PRISM will be used for this purpose at AFSFC as well.

1.2 Approach
Ideally, the specification of the current state of the ionosphere would be obtained directly

from real time observations from a dense network of satellite and ground based instruments.
Unfortunately, the complexity and spatial extent of the ionosphere precludes the deployment of a

sufficiently dense network of observing instruments. Therefore, any practical ionospheric



specification algorithm must be based on an ionospheric model with parameters that can be
adjusted on the basis of near real time data. Two approaches are possible: (1) statistical or
- empirical climatological models or (2) numerical simulations based on physical models. (In this
paper “physical model” is synonymous with “numerical model.”) For reasons described below,
we have chosen the second approach (physical models). However, practical considerations
(primarily computational speed) dictate that the algorithms implemented at the Space Forecast

Center be based on parameterized versions of the physical models (“theoretical climatology™).

We feel strongly that a comprehensive physical model of ionospheric processes can
produce more accurate specifications and forecasts than can statistical or climatological models.
The causal relationship between easily monitored solar and geophysical parameters (e.g., K, F1o7,
etc.) and a particular ionospheric configuration is very complex. Any organization of historical
ionospheric data inevitably averages over a variety of ionospheric configurations corresponding to
similar values of the chosen set of solar-geophysical parameters (usually only one or two). The
result is that spatial structure tends to be smeared out or smoothed over, and the resulting model
is unrepresentative of the instantaneous ionosphere. If a physical model contains all of the
relevant physics, and if the inputs are realistic, then it will produce more realistic representations
of instantaneous ionospheric structure. However, there is a difference between a realistic

representation and an accurate one.

In order to accurately simulate a time dependent phenomenon like the ionosphere, a
physical model needs an accurate specification of the initial conditions and an accurate
representation of the energy and momentum flux at the boundaries. For the purposes of providing
a specification model, it is the energy and momentum input that is crucial. If the model is run long
enough, the effects of the initial conditions are lost and the present state of the model depends
only on the recent history of the energy and momentum input. These include the solar EUV (the
primary source of ionization outside the auroral zone), high latitude heating of the thermosphere
(which affects the global circulation of the thermosphere), high latitude convection, and low
latitude dynamo electric fields. While the temporal and spatial resolution of the observations of

these quantities are expected to improve in the future, they will probably never be sufficient to




allow accurate simulation of the ionosphere without additional data. As a practical matter,
ionospheric simulations must be, and will remain, iterative in nature: The energy and momentum
“input parameters are adjusted until the simulation agrees with observations of ionospheric

parameters to some level of accuracy.

A practical consequence of this situation is that the production of an accurate ionospheric
specification based on a numerical simulation requires that the physical model be run several
(perhaps many) times until its output agrees with the available observations. The requirement that
the model cover a sufficient time period to allow the transient effects of the initial conditions to
damp out implies that the physical model must run much faster than the system it is simulating.
At the present time, given practical (i.e., financial) limits on the available computing power, this is
not possible. Consequently, we have adopted a modified approach in which the physical models
are parameterized in terms of solar and geophysical parameters. It is these parameterized models

rather than the original physical models which are to be adjusted according to the real time

ionospheric data.

There is a superficial similarity between our approach and a climatological approach. The
difference, however, is that we begin with a more realistic representation of the spatial structure
of the ionosphere than climatological models can provide. The parameter adjustment process
should not compromise this advantage. In the future, as more powerful computers and more
efficient model algorithms become available, the parameterized models can be replaced by actual

physical models to produce more accurate specifications.




2. THE PHYSICAL MODELS

Four separate physical models were used as the basis of PRISM: (1) a low latitude F layer
model (LOWLAT), (2) a midlatitude F layer model (MIDLAT), (3) a combined low and middle
latitude E layer model (ECSD), and (4) a high latitude E and F layer model (TDIM). All four
models are based on a tilted dipole representation of the geomagnetic field and a corresponding
magnetic coordinate system. (Hereafter, “latitude” means “magnetic latitude” unless otherwise
noted.) All four models use the MSIS-86 neutral atmosphere model [Hedin, 1987]. Chemical

reaction rates, collision frequencies, and similar data are consistent among all the models.

2.1 The Low Latitude F Layer Model

The low latitude F region model (LOWLAT) was originally developed by Anderson,
[1973]. (See also Moffett, [1979]). It solves the diffusion equation for O" along a magnetic flux
tube. Normally, the entire flux tube is calculated with chemical equilibrium boundary conditions
at both feet of the flux tube. A large number of flux tubes must be calculated in order to build up
an altitude profile.

Since heat transport is not included in this model, ion and electron temperature models
must be used. For the PRISM development effort we chose the temperature model of Brace and
Theis [1981]. The Horizontal Wind Model (HWM) of Hedin [1988] was used to describe
thermospheric winds.

The critical feature incorporated in the low latitude model is the dynamo electric field.
The horizontal component of this field drives upward convection through EXB drift, and this can
significantly modify profile shapes and densities. This phenomenon is responsible for the
equatorial anomaly, crests in ionization on either side of the magnetic equator at +15-20°
magnetic latitude. In the current version of PRISM (Version 1.5) the Ex B driven vertical drift
used for these calculations was based on the empirical models derived from data from the
Atmospheric Explorer-E (AE-E) satellite [Fejer et al., 1995], which are consistent with the drifts
measured at Jicamarca [Fejer, 1981; Fejer et al., 1989] but include longitudinal variations as well.

We used the Fejer et al. [1995) empirical drifts for moderate and high solar activity. Following




the their discussion, we modified these drifts by reducing or eliminating the pre-reversal
enhancement for low solar activity. Horizontal drifts were neglected in the PRISM runs.

Since its original development this model has undergone extensive validation by
comparison with data. The most recent such comparison is Preble et al. [1994] using electron

density profiles measured by the incoherent scatter radar facility at Jicamarca, Peru.

2.2 The Midlatitude F Layer Model

The midlatitude F region model (MIDLAT) is the same as the low latitude version, except
that the dynamo electric field is not included. Complete flux tubes are followed, but neither
horizontal nor vertical convection is included. The computer resource requirements of MIDLAT
are far less than those of LOWLAT. As long as the boundary between low and middle latitudes is
chosen so that the electric field is negligible on the boundary flux tubes, the two models give
identical results at the boundary ensuring continuity across that boundary. For the PRISM
development effort we used the same temperature model [Brace and Theis, 1981] and the same
thermospheric wind model [Hedin, 1988]. For appropriate production, loss, and diffusion rates

for both LOWLAT and MIDLAT, see Decker et al. [1994].

2.3 The Low and Midlatitude E Layer Model

The low and mid- latitude E region model (ECSD) was developed by Dwight T. Decker
and John R. Jasperse and incorporates photoelectrons calculated using the continuous slowing
down (CSD) approximation [Jasperse, 1982]. Ion concentrations are calculated assuming local

chemical equilibrium. A small nighttime source is included to ensure that an E layer is maintained

throughout the night.




2.4 The High Latitude Model

The high latitude model (incorporating both E and F layers) is the Utah State University
(USU) Time Dependent Ionospheric Model (TDIM). (See Schunk [1988] for a review.) This
model is similar to the low and middle latitude models except that the flux tubes are truncated and
a flux boundary condition is applied at the top. In addition, the flux tubes move under the
influence of the high latitude convection electric field. In the low latitudes, because the magnetic
field is mainly horizontal, the effect of the electric field is primarily to move the ionization in
altitude. In contrast, the high latitude magnetic field is mainly vertical, and the electric field driven
convection is horizontal. Like LOWLAT, this model has a long history and has been validated by
numerous comparisons with data.

TDIM includes an E-layer model that incorporates the effects of ionization by
precipitating auroral particles. The ion production rates used were calculated using the B3C
electron transport code [Strickland, 1976; Strickland et al., 1994] and incident electron spectra
representative of DMSP SSJ/5 data. The characteristics of the electron spectra were taken from
the Hardy et al. [1987] electron precipitation model. The high latitude convection patterns were

those developed by Heppner and Maynard [1987] for southward directed B,.




3. PARAMETERIZATION OF THE PHYSICAL MODELS

Parameterization of the physical models proceeded in two steps. First, the models were
used to generate a number of "databases” for a discrete set of geophysical conditions. Each
database consists of ion density profiles on a discrete grid of latitudes and longitudes for a 24 hour
period in UT. Second, to reduce storage requirements, the databases were approximated with

semi-analytic functions. These two processes are described in the following subsections.

3.1 Geophysical Parameters

All the physical models were parameterized in terms of season and solar activity. The
middle and high latitude models were also parameterized in terms of magnetic activity, while the
high latitude model was additionally parameterized in terms of the sign of the interplanetary

magnetic field component B). (The high latitude model was only run using B, southward.

Northward B, conditions are modeled using the low magnetic activity databases.) For the middle
and low latitudes, the F layer (O") and the E layer (NO*and O;) were computed and
parameierized separately.  The high latitude model (TDIM) produced all three ions
simultaneously.

Due to time and computer resource limitations, only a few values of each parameter were
used. The season "values" are the June and December solstices and the March equinox (which
also "stands in" for the September equinox). We expect to change from seasonal to monthly
values in the next versions of PIM and PRISM. The values of the other parameters are
summarized for each latitude region in Table 1. Note that the USU TDIM and LOWLAT
produce output in magnetic local time (MLT), while MIDLAT and ECSD produce output in
magnetic longitude. Since the two coordinates are readily interconvertible, we will ignore the

distinction and refer only to magnetic longitude in the description that follows.




Table 1: Geophysical Parameter Values

Solar Activity | Magnetic IMF B, Number of
(Fo7) Activity direction databases
(K,)
Low Latitude F layer 70, 130, 210 N/A N/A 36“
Midlatitude Flayer 70, 130, 210 1,3.5,6 N/A 54°
Low & Midlatitude E layer 70, 130, 210 1,3.5,6 N/A 54¢
High Latitude E & Flayer 70, 130, 210 1,3.5,6 +, - 3244

*3 seasons X 3 solar activities X 4 longitude sectors

®3 seasons X 3 solar activities X 3 magnetic activitiesX 2 hemispheres

°3 seasons X 3 solar activities X 3 magnetic activitiesxX 2 species

93 seasons X 3 solar activities X 3 magnetic activitiesx 2 By’sx 3 species X 2 hemispheres

3.2 Representation of the Databases

When the models are run for any one set of geophysical parameters (e.g., June, Fy,; = 130,
K, = 1), they produce ion densities (O, NO*, and Oy}) on a four dimensional grid. MIDLAT and
ECSD use a grid of magnetic latitude (1), magnetic longitude (¢), altitude(z), and Universal
Time (t). TDIM uses magnetic local time (MLT or y ) instead of magnetic longitude, while
LOWLAT uses MLT instead of UT. In order to make this mass of numbers more manageable,
we produced a semi-analytical representation of each database. The space and time grid
parameters are summarized for each latitude region in Table2.

Due to the computer resource requirements of the low latitude F layer code, it was used to
generate databases at four discrete longitudes (corresponding to longitude sectors for which ExB
drift measurements were available). Each longitude sector was parameterized separately, and the
necessary longitude interpolation is carried out in PIM and PRISM during execution, as described
below.)

Because we were trying to represent discrete data (rather than continuous functions), and
because we were working with regional rather than global data sets, we felt that the usual
spherical harmonic expansion techniques were not appropriate. Instead we concentrated on the

use of orthogonal functions of discrete variables.




Table 2: Horizontal Grid Parameters

Latitude Region | Magnetic Magnetic UT Number of
Latitude Longitude altitude profiles
per database
Low Latitude —32°to 32°in 30°, 149°, 250°, | MLT: 0.0 to 1,584
F layer 2° steps and 329° 23.5in 0.5 hr
steps
Midlatitude 30°to 74° and | 0° to 345° in 0100 t0 2300 in | 3,456
F layer -30°to —74°in | 15° steps 2 hr steps
4° steps
Low and -76°to 76°in | 0° to 345° in 010010 2300in | 11,232
Midlatitude 4° steps 15° steps 2 hr steps
E layer
High Latitude E | 51° to 89° and | MLT: 0.5 to 0100 t0 2300in | 5,760
& F layer -51°to —89°in | 23.5in 1 hour 2 hr steps
2° steps steps

We considered the use of modified Chapman functions for representing altitude profiles of
ion densities. These functions have the advantage that peak height and peak density are explicit
parameters, but the extremely non-linear nature of these functions necessitates the use of non-
linear least squares fitting methods. While such methods produced excellent representations of
individual profiles, the variation of the fitted parameters with latitude, longitude (or MLT), and
UT was unacceptably noisy. Consequently, we chose to use Empirical Orthornormal Functions
for the altitude representation.

Empirical Orthonormal Functions (EOFs) have been used extensively to represent
meteorological and climatological data [Lorenz, 1956; Kutzbach, 1967; Davis, 1976; and Peixota
and Oort, 1991]. They have also been used for empirical ionospheric modeling [Secan and
Tascione, 1984]. EOFs are described in Appendix A. They have the advantage of providing a
representation in terms of linear combinations of orthogonal functions, which allows for
straightforward determination of coefficients. However, because peak density and peak height are
not explicit parameters of the representation, these parameters can be determined only by
reconstructing the entire profile and invoking a peak finding algorithm. We expect to revisit this

problem in future versions of PIM and PRISM and implement a new representation that combines

10




the attractive features of both methods, i.e., that includes peak density and peak height as explicit
parameters yet relies on linear combinations of orthogonal functions to describe the profile shape.

For longitude (or local time) variations (and for the low latitude F layer UT variation), the
obvious choice is a Fourier series, since trigonometric functions retain their orthogonality
properties on uniform discrete grids and because the data is periodic in the independent variable.
These worked quite well for the high latitude models under all conditions and for the low and
midlatitude models under low to moderate solar activity conditions. However, they did not work
well for the low and midlatitude models under high solar activity conditions, apparently because
the EOF coefficients exhibited exceptionally large gradients at dawn and dusk. Therefore, we
decided to tabulate the coefficients in longitude for all the low and midlatitude databases.

For the latitude variations, we chose to generate grid-specific orthogonal polynomials
using the algorithm derived in Beckmann [1973] and described in Appendix B. To help keep the

notation straight, we summarize it in Table3.

Table 3. Notation Summary

grid variable index orthogonal function index
altitude z; 1<i<I EOF: g,(z) 1<sm<M
latitude Y 1<j<J polynomial: u, () 0<n<N
longitude 0, 1<k<K trigonometric cos(p¢)and sin(po) 0<p<P
local time v, 1<k <k | trigonometric’: cos(py)and sin(py) | 0<p<P
UT T, 1<I<L trigonometric?: cos(gt)and sin(gt) 0<g<Q

aNot used for any database in PRISM 1.5, but may be used in future versions.
bUsed only for high latitude databases.

The semianalytic representation of each database was generated in several steps. For all

ionospheric regions, the first step was the determination of the EOFs from the ion densities in the

database and a set of coefficients c,m(k i+ k) for representing each ion density profile on the

latitude, longitude, UT grid (See Appendix A).
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n(2A ¥ 10 T,) = Zc“)(x W T,)8s(z) [TDIM] (1a)

m=1

M

1 (2% 007,) = 2N ,0,.7,)89(=) [MIDLAT, ECSD]  (1b)
m=1
M

(20550, ,) = D ¢S (A .0,.¥ g (2) [LOWLAT] (1c)
m=]

where z;, A;, 9, ¥, T;, and y, are all points on the model output grid, and g¥(z,) is the m®
EOF evaluated at z;. (Note, however, that a different set of g%(z,) functions are used for each
ion, for each set of geophysical conditions, and for each model.)

For the high latitude model (TDIM, both E- and F-layers), the second step was the

generation of Fourier coefficients in MLT, a ’)(k ,T ) and b,f;)(k j,t,), for each point on the

Iatitude, UT grid.

M P
ns(Zi’}"j’W”tl) = ZZ{GSP)(}L,"TJCOS(I?W) +b,(n;)(7‘-js'cz) Sin(pW)}g;(:)(zi) [TDIM]  (2)

m=1 p=0

For the low and midlatitude models, we found that a truncated Fourier series often introduced
spurious longitudinal dependences, apparently driven by the steep gradients at dawn and dusk.
The effect was particularly pronounced at high solar activity when the day/night contrast is the
greatest. Consequently, for these models, the EOF coefficients remain tabulated in longitude.
For all models, the next step was the generation of orthogonal polynomials from the

latitude grid (Appendix B). For the high latitude model (TDIM) the coefficients are &) (t,) and

BY (t,), and the ion density is approximated by

mnp

n(z;, A W,T,) = ZZZ{Q(“) ,)cos(py) + ijjp(r,)sin(pw)}gm(z,.)un(k) [TDIM] (3a)

m=] n=0 p=0

For MIDLAT and ECSD the coefficients are?y f,f,Z(?x ;»T,) and the ion density is approximated by

12




1,2, A 0,7 ) = ZZVW% )8z Ju,(A) [MIDLAT, ECSD]  (3b)

m=1 n=0

For LOWLAT the coefficients aren(“‘)((p .-V ;) and the ion density is approximated by

M N
n(Zu k0¥ ) = Y, (0, ). (2 )u,(M) [LOWLAT] (3¢)

m=1 n=0
The number of terms in each series are listed in Table4 for each region.

Table 4: Altitude Grids and EOF’s

Database number of minimum maximum number of
altitude points | altitude altitude EOF’s

low latitude O* 55 160 1600 9

midlatitude O* 49 125 1600 8

low & midlatitude NO* & O; | 28 90 400 7

high latitudeO*, NO*, & O; 37 100 800 6

Note that in none of these cases was the altitude spacing uniform.

Because of the extensive use of tabulated coefficients, the ion density at an arbitrary point
must be obtained by interpolation. In PIM and PRISM, altitude interpolation is quadratic, while
UT interpolation is linear. For the MIDLAT databases, the longitude interpolation is also linear,
as is the local time interpolation in the LOWLAT databases. However, the longitude interpolation
in the LOWLAT databases is more complicated. First, the O" profile for the desired magnetic
latitude and local time is reconstructed for each of the four longitude sectors. Then the peak
height and peak density is determined for each profile. The peak height for the desired longitude
is determined by Fourier interpolation, and all four profiles are shifted to match the interpolated
peak height. Then Fourier interpolation is used at each altitude to obtain the interpolated ion

density profile.
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3.3 Merging the Regional Models

Because we used four different regional models in the development of PRISM, the models
must be merged at region boundaries. Specifically, the low latitude and midlatitude O models
have to be merged across the boundary between low and middle latitudes, while all three ions
(0", NO*, and O;) must be merged across the boundary between midlatitudes and high latitudes.

The transition from low latitude O profiles to midlatitude O" profiles takes place
between 30° and 34° in both hemispheres. The transition is accomplished by taking a weighted
average of the h_F, values from the two models in which the weight shifts linearly from 100%
low latitude at 30° to 100% midlatitude at 34°. The profiles are shifted to match the averaged
h F, values and then a similar weighted average of the shifted profiles is taken to produce the
final merged profile. No transition for NO* and O] is necessary since a single model was used
for these ions.

The transition from midlatitude to high latitude takes place over an 8° wide zone whose
poleward boundary is the equatorward boundary of the trough. The transition process is similar
to the low to midlatitude transition, except that the high latitude profiles are shifted to match the
h F, and h E values given by the midlatitude models. The final profile is produced by a weighted
average of midlatitude and (shifted) high latitude profiles.

Although PIM and PRISM use geomagnetic coordinates internally, they can produce
output in either geomagnetic or geographic coordinates. A contour map of N F, in geographic
coordinates (cylindrical projection) for the June solstice at high solar activity and moderate
magnetic activity is displayed in Figure 1. The equatorial anomaly is clearly visible between East
longitudes 30° and 180°, corresponding to local times of 1400 and 2400. The high latitude is
more clearly seen in a polar projection such as is displayed in Figure 2, again in geographic
coordinates. The figure shows the northern hemisphere at the December solstice. B, is positive,
and the tongue of ionization resulting from a steady convection pattern is clearly visible on the

evening side.
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PIM: N_F,: day 172,12 UT: F,,,=210.0,K =3.5
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Figure 1. Contours of N, F, (in units of 10° cm™) in cylindrical equidistant projection from PIM
for high solar activity, moderate magnetic activity, at 12 UT near the June solstice.
The equatorial anomaly is clearly evident from about 1400 to 2400 local time.
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Figure 2.

PIM: N,F, day 355, 00 UT: F,,=210.0, K, =3.5

Contours of N, F, (in units of 10° cm™) in polar projection from PIM for the same

conditions as Figure 2 except for 00 UT and December solstice. The “tongue of
ionization” produced by a steady convection pattern is clearly evident. Local midnight

is at the bottom.
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4. REAL TIME ADJUSTMENT ALGORITHM

The Real Time Adjustment (RTA) algorithm for the low and middle latitude regions is
different from the algorithm used in the high latitude region. This is partly due to the relatively
complex morphology of the high latitude ionosphere and partly due to an evolution in our ideas

about the real time adjustment process during the development of PRISM.

4.1 Available Data

The near real time data available for use in the adjustment process comes from the Digital
Ionospheric Sounding System (DISS), the Ionospheric Monitoring System (IMS), and a suite of
Special Sensors on the DMSP satellites. The DISS network consists of a network of digital
ionosondes measuring critical frequencies, critical heights, and bottomside profiles. There are
projected to be 19 DISS sites when the network is complete. The Ionospheric Monitoring
System consists of a separate network of dual frequency GPS receivers measuring TEC. The
number is IMS sites is not finallized but is expected to be about five. The DMSP Special Sensors
include the in situ plasma properties measured by the SSIES instrument and the precipitating
particle measurements of the SSJ/4 instrument. In the future, the SSJ/4 instrument will be
replaced by the SSJ/5 instrument and a new set of ionospheric remote sensing instruments, SSUSI
and SSULI will be added. SSUSI (a multispectral UV imager) and SSULI (a multispectral limb
imager) will make measurements of dayglow, nightglow, and auroral optical emissions (mostly
ultraviolet). The observed intensities will be processed on the ground to deduce ionospheric
properties in the form of PRISM profile parameters [e.g., Fox et al., 1994]. The two UV imagers
will be flown on DMSP beginning some time near the end of the decade.

Because TEC is an integral quantity, it is not easy to incorporate it into the PRISM real
time scheme. For PRISM 1.5, we have chosen to convert TEC into an equivalent point datumn.

Our method for doing so is described in Appendix C.
4.2 Low and Midlatitude Adjustment Parameters

The PRISM real time adjustment algorithm operates on six parameters that prescribe how

an electron density profile is to be modified or "corrected":
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1. Af,F,, the correction to the model f,F,,

2. Af,E, the correction to the model f E,

3. Ah F,, the correction to the model A F,,

4. Ah E, the correction to the model 4 E,

5. AN,OP , the correction to the O density at a specific altitude (i.e., the DMSP altitude)
6. AH,,, the correction to the O" scale height at a specific altitude (ie., ‘the DMSP
altitude)

The nominal value for each of these parameters is zero. A positive (negative) value means that
the model value must be increased (decreased). Using the available near real time data, the real
time adjustment process will assign non-zero values at each location where data is available (the
driver sites).
Parameters 1-4 are based on direct measurements by DISS digital ionosondes. Parameter
5 is based on the direct measurement of the O density by the SSIES instrument on board the
DMSP satellite. In contrast, Parameter 6 must be inferred from the electron and ion temperatures
(T., T)) measured by the SSIES instrument. At midlatitudes, PRISM assumes that the topside
ionosphere is in diffusive equilibrium and calculates the topside scale height from
_KT,+T) )

top
7710+ 8

The corresponding model value is obtained from the model O densities (n,, n,) at the grid

altitudes (z,, z,) immediately above and below the DMSP altitude:

__ LTk
Ao = () ©
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At low latitudes, the topside scale height is determined by diffusive processes alone, so the scale

height cannot be inferred from the SSIES temperature data.

4.3 Real Time Adjustment of the Low and Midlatitude Profile Parameters

In PRISM 1.5, after the values of the profile adjustment parameters have been determined
at each driver site, the global correction field is determined using a weighted average method.

1. Given N driver locations and the associated geomagnetic coordinates (A ,,9,), let the

unadjusted PRISM value at the n” point be u, and the measured value be v, .

2. The correction to be applied to the unadjusted PRISM (i.e., PIM) value at the n”
pointisc, =v, —u,.

3. Atany other point, (A,0), the correction to be applied to the PIM value is

iwn(?\.,(b)cn
o(A.¢) ="H— ()
> w,(A.0)

n=1

where the w,(A,¢) are weight functions that depend on the distance measure d (\,0)

between the point (A,¢) and the n” point(A,,0,).

[Ta.(r0)
wn(x’q)):k_::iW:gdk(;\"(p) ®)

In PRISM 1.5 we have used the following distance measure.
d,(A.9) =[1-cosy,(2.0)] ©

where v ,(X,0) is the great circle distance between (X,0) and (X,,0,):
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cosy,(A,0) =sinAsinA, +cosAcosh, cos(¢p —9,) (10)

"As a practical matter, the actual weighting function used in PRISM is w,(A,9)=1/d,(A,0)
unless d_(A,¢) <8 for some driver station m. In that case, w,, =1land w, =0 for n#m. In
PRISM 1.5, § is set to 107°.

This method ensures that PRISM will reproduce the input data. However, because the
decorrelation length of the ionosphere is of the order of 1000 km or less, no interpolation scheme
can hope to accurately reproduce ionospheric parameters where there is no data. Clearly, the
denser the data net, the better the model will do. Unfortunately, at least initially, the data will be
quite sparse. In order to ensure that sparse datasets do not produce unreasonable ionospheric
specifications, PRISM 1.5 checks the spatial disiribution of the data and inserts “phantom
stations” with the corrections forced to zero. The procedure for placing phantom stations is as

follows.

The low and midlatitude region is divided into 32 rectangular subregions with boundaries
defined by the following parallels of latitude and meridians of longitude:
parallels of latitude: 60°S, 30°S, 0°, 30°N, and 60°N
meridians of longitude:  30°E, 75°E, 120°E, 165°E, 210°E, 255°E, 300°E, and
345°E
There is a phantom station located at the center of each rectangle. During the data ingestion
process, PRISM keeps track of how many stations are located in each rectangular subregion, and

how many have f F, data. As long as at least one station in a subregion reports a value for f £,

then the phantom station for that subregion is ignored. If, however, no station in the subregion

reports a value for f F,, then the phantom station is assigned a value equal to the PIM value at
that point. A similar procedure is followed for 4 _F,, F.E, and h E data. These phantom stations

force the correction field to relax to values near zero in regions where there is no data.
4.4 Modifying the Low and Midlatitude Model Profiles

The interpolation method described above provides a global correction field that can be

used to calculate the profile correction parameters at any location. In this section, we describe the
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way in which the profiles are adjusted using the profile correction parameters. First the layer
heights are adjusted, then the layer peak densities, and finally the topside correction is applied.

The layer height correction, using parameters 3 and 4 is a simple shifting of the profiles. If

the F layer correction is Ak, F, , then the O” profile is shifted so that
ny.""(z) =n,.""(z— Ah,F,) (11)
A similar shift is applied to the molecular ion profiles, except that the altitude shift i\z E.

Once the altitude corrections have been applied, parameters 1 and 2, the critical
frequencies, will be used to scale the ion density profiles. For the F layer (O"), the unadjusted
peak density is converted to a critical frequency. The correction to be applied (determihed by the
algorithm in section 4.3) is simply added to the unadjusted frequency. The corrected frequency is
then converted back to a density. The ratio of the corrected density to the unadjusted density is
used to scale the profile above the peak. Below the peak, an additive correction is applied. This
additive correction smoothly vanishes as the altitude approaches #_,E. This ensures that F layer
corrections do not impact the E layer. This additive correction is described in Appendix C. A
similar scaling is applied to the molecular ions except that the additive correction is used above
the peak and smoothly vanishes as the altitude approaches h_F,. This ensures that the E layer
corrections do not impact the F layer.

Parameters 5 and 6 are used to correct the topside profile based on n,, n, T,, and T,
measurements from SSIES on DMSP (nominally 840 km). Let N, (z) be the model O" profile
(after f,F, and h_F, corrections have been applied). Further, let z, =4 F,, and let z,,= the

altitude at which AN,,, and AH,,, were measured (usually the DMSP altitude). Let N(z) be the

corrected profile based on AN,, and AH,,,. N.(z) must satisfy the following conditions:

top

N.(24,)=N,, = N,(z,,)+AN,, (12)
and
1 _ (10N, _ 1 1
Hc(zmp)= (NC oz ) H, —H,(z,,)+AH,, (13)
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In PRISM the corrected profile is obtained from the model profile by scaling the altitude so that

N (2)=N,(C) (14)
where
z, zSz‘7
2
CE=1, ([pamn MG, ) ams flEma) 09
d Zop—Z, H,, 4 Hy  Zo-2, | 2,2, ’ 4
N_(z, ). =N,, (16)
and
1 1 oN
= — L 17
H, (z) (Nm 0z )m, 7

Direct substitution of z =z, in Equation (15) verifies that C(z,op) =z, so that Equation (12) is

satisfied. That Equation (13) is satisfied may be seen from

1 __(iazvc)
Hc(zwp)— N, oz .

top

1 oN, o 1 -z, HJ(z) |H(z) z-z
= n%e | - p Y B VR | AV R (18)
(Nm(c) ag 0z ')zwp Hm(zl) { Zrop - Zp H:op Htop Zrop - Zp

This form ensures that the correction and its first derivative vanish at the peak and that the O*
concentration and its slope are as specified atz,,,.

When there is no topside scale height data (as at low latitudes), PRISM sets H,, to the

value

z
H = “-H,  (when H,, is not determined from data) (19)
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so that the altitude scaling becomes linear

zZ,—z
1 is not determined from data) (20)

£ (z—zp) (when H

top
Z“’P ZP

C(z)=z,+

An example of the midlatitude profile correction algorithm applied to a single profile is
shown in Figure 3, for which we have used Incoherent Scatter Radar (ISR) data from Arecibo to
simulate simultaneous digisonde and SSIES data. In this case, the data is from 1800 UT on 4
October 1989. In Figure 3a, the ISR data is compared with the climatology of PIM (ie.,
unadjusted PRISM). A profile from the Ionospheric Conductivity and Electron Density (ICED)
model [Tascione et al., 1988], which is currently operational at AFSFC is also shown. The actual
N_F, is a factor of two higher, and the actual £, F, is about 40 km higher, than the climatological
values. In Figure 3b, the PRISM profile has been adjusted only to match the actual N F,. In
Figure 3c, both N F, and h_F, have been adjusted to match the actual data. Finally, in Figure 3d,

both the peak and topside adjustments have been made. If we define an RMS density error as

13 _ 2
RMS density error = iz[N paas(2) = N da'a(z"):l 1)
13 N iara(2)

k=1

then PRISM’s RMS density error declines from 46% with no profile adjustment to 25% with an
N, F, adjustment only, to 18% with both N_F, and h_F, adjusted, and to 16% with both peak and

topside adjustments.

Note that in operational use there are normally many data sites, and the topside and
bottomside data are seldom colocated. Operationally, PRISM uses all available #_F, and A E
data to establish global layer height correction fields, then it uses the available N F, and N _E
data to calculate global profile scaling fields, and finally it uses the topside data to calculate global
topside correction fields. These correction fields are then applied to each profile on the output

grid as described above.
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Figure 3.
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The PRISM profile adjustment procedure illustrated using Incoherent Scatter Radar

(ISR) data from Arecibo. (a) No adjustment (i.e., PIM profile): The RMS density
error is 46%. (b) N_F, adjustment only: The RMS density error is 25%. (c) N,F,

and 4, F, adjustment: The RMS density error is 18%. (d) N, F,, 4, F,, and topside

adjustments: The RMS density error is 16%.
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4.5 The High Latitude Adjustment Algorithm
Due to the complexity of the high latitude ionosphere, the real time adjustment algorithm
- differs appreciably from the low and midlatitude algorithm. Until SSUSI data becomes available,
there will be insufficient data to adjust the parameterized USU model in the way that the
parameterized low and midlatitude models can be adjusted. Even with SSUSI data, it is not clear
that the midlatitude algorithm is appropriate for the high latitude regions.

In PRISM 1.2, the first step in the high latitude real time adjustment process is the
establishment of boundary locations. Three boundaries are required: (1) the equatorward edge of
the trough, (2) the equatorward edge of the auroral oval, and (3) the poleward edge of the auroral
oval. _

The equatorward edge of the trough is determined from SSIES drift meter data as the
point where the measured ion drift speed departs from the corotation value. The trough boundary

as a function of magnetic longitude is given by the formula

6.(¢) =90(I,)+aexp[—((p ‘bﬂ

c

where ¢ is the magnetic local time (MLT, hours), and ], is a "trough index" correlated with K,,.

0,(7,) is the radius of the trough boundary at magnetic local midnight and is given by

0,(1,)=244° + 212°1,

The second term represents the dayside distortion of the boundary, which would otherwise be a

circle centered on the magnetic pole. The parameter values are

a = -10.5°
b=115hr
¢ = 388hr
p =273
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This model is an approximation to the convection boundaries shown in Heppner and Maynard

[1987].

The trough index, /,, is determined according to the following algorithm.
1. If there is no ion drift data, or if a boundary cannot be identified in the data, then/, = K .

2. If a single boundary crossing is identified at colatituded , and local timegp, , then
2
8,=6, ~aexp[—((p” _b) ]
c

_0,-24.4°
T 2120

3. If two or more crossings are identified, then the value of 7, used is the average of the values

and

determined for each crossing.

The boundaries of the auroral oval are determined from electron and ion precipitation data
from the SSJ/4 instrument. Separate boundaries are determined for electron and ion precipitation.

The algorithm for determining the electron and ion precipitation boundaries from the SSJ/4 data is

described in Appendix D.

The next step in the high latitude adjustment process depends on the amount and kind of
data available. The decision of how to proceed is made separately for the E layer (NO"and O3)

and the F layer (O"). In each case, two choices are available:

F layer:

1. Perform a simple least squares adjustment of theUSU O" model.

2. Use a semi-empiricalf,F, model (FMODEL) to adjust the USU O" profiles.

E layer:

26



1. Perform a simple least squares adjustment of the USUNO™ and O] models.

2. Use a fast, first principles, E layer local chemistry model (HLE).

The decision matrix used in PRISM is shown in Table5.

Table 5. PRISM High Latitude Decision Matrix

Data Available? Model Used by PRISM
DISS | SSIES | SSJ/4 F layer E layer
Yes Yes Yes FMODEL HLE
Yes Yes No FMODEL USuU
Yes No Yes FMODEL HLE
Yes No No USu USu
No Yes Yes USU USuU
No Yes No USuU USu
No No Yes USuU USuU
No No No USU USU

In experimenting with high latitude data, we found that extrapolating SSJ/4 data taken
along the DMSP orbital track to points well away from the orbital track was very risky. We
found no suitable model of the instantaneous auroral precipitation for this extrapolation. When
SSUSI auroral image data becomes available, this limitation will be removed because much less
extrapolation will be required. It should be possible to use HLE whenever timely SSUSI images

are available.

FMODEL is a semi-empirical model of f,F, based on a combination of theory and data. It
is divided into three regions: the subauroral trough, the auroral oval, and the polar cap. The f,F,

determined by least squares adjustment of the model parameters is used to scale the USU O*

profiles. No further adjustment of the profiles is performed.

The subauroral trough is divided into two local time regimes: evening (from 1200 to 0000
MLT) and morning (from 0000 to 1200 MLT). Each trough (morning and evening) has a depth
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parameter that specifies the difference between the midlatitude value of f F, at the equatorward
edge and the trough minimum. The local time variation of the trough depth is fixed (not part of
‘the least squares adjustment process). If the width of the trough is less than 3°, the depth is
reduced in proportion to the width so that when the width vanishes so does the depth. The
thickness of the (equatorward) trough wall is always 60% of the‘total width of the trough. The
poleward edge of the trough is the equatorward edge of the auroral F-layer, so the poleward

"wall" is considered to be part of the auroral region.

At fixed magnetic local time, the auroral F layer fF, is simply a cubic polynomial in

magnetic latitude:
FF)= frt A=A + B =R, )

where f,. = f,F,(A,..) is an extremum, and A and B are chosen so that f,F, is continuous

across the boundaries with the trough and polar cap.

The background polar cap f,F, is obtained from the URSI coefficients using an internally

derived effective sunspot number, the value of which is determined as part of the least squares
adjustment process based on ionosonde data. It should be noted that this part of the model

describes only the background polar cap ionosphere, not "polar cap patches” or "polar cap arcs.”
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5. VALIDATION

Prior to delivery to the Air Force Space Forecast Center, and earlier version of PRISM
(1.2) underwent an extensive validation using historical data approximating the kinds of data that
will be available to PRISM in operational use. The results of this validation effort were reported
in Daniell et al. [1994] and are not repeated here. Since PRISM 1.5 incorporates several
substantial changes from PRISM 1.2, a new validation will be carried out in the future under a

separate contract.
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6. DISCUSSION

We have described the development of PRISM, a real time ionospheric specification
model based on parameterized theoretical ionospheric models. Unlike previous specification
models, PRISM is based on physical models rather than empirical models. PRISM consists of
two parts: the parameterized physical models (PIM) and a real time update system that ingests
both ground-based and space-based data and modifies PIM profiles accordingly. PRISM provides
considerable improvement over simple climatology in the vicinity of the data sources and does no
worse than climatology at locations remote from the data. With the advent of remote ionospheric
sensing using UV airglow and auroral emissions measured from satellites and the proliferation of
dual frequency GPS receivers providing line of sight TEC measurements, we expect this approach

to provide improved ionospheric specifications in near real time for the AFSFC and its customers.

A number of compromises were required in the development of PIM and PRISM. First,
of course, was the necessity of using parameterizations (in the form of diurnally reproducible
runs) of the physical models, rather than the physical models themselves. Second, we had to use
empirical models (e.g., MSIS-86) instead of physical models to provide the necessary inputs to
the ionospheric models. Third, we had to use a tilted dipole representation of the earth’s
magnetic field instead of a more realistic model. This last compromise is mitigated somewhat by
the use of Corrected Geomagnetic (CGM) coordinates in PIM and PRISM. While not fully self-
consistent, this does allow a more realistic representation of geomagnetically controlled features

such as the equatorial anomaly. We expect to remove the compromises as available computing

power increases in the future.

The particular features described here apply to PRISM version 1.5 and PIM version 1.3.
Significant enhancements to both PIM and PRISM are planned for the near future. H" ion
densities based on a parameterization of the plasmasphere model of Bailey and Sellek [1990] will
be added so that PIM and PRISM can give electron density profiles up to the plasmapause. At
the same time the coefficient files will be regenerated using a single global ionospheric model,

eliminating the need to merge models across region boundaries. The parameterization process
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will also be reexamined in order to produce a more accurate and more efficient analytic fit to the
model runs. The resulting version of PRISM, while considerably enhanced, will be designed to fit
~into AFSFC’s operational configuration with no changes to the existing software that interacts

with PRISM 1.5.
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Appendix A. Empirical Orthonormal Functions

This treatment of empirical orthogonal functions (EOF%) is based on the Appendix of
Secan and Tascione [1984], which was based on Lorenz [1956], Kutzbach [1967], and Davis
[1976]. See also Peixota and Oort [1991]. The reader is referred to these references for

mathematical proofs of the assertions made below. In the following discussion, we use the

notation given in Table 3 of the main text.

A database consists of altitude profiles at certain longitudes, certain latitudes, and certain
Universal Times. (See Tables 1-4 of the main text.) Let S be the number of altitude profiles in a
database, and let 7 be the number of points in each altitude profile. We would like to represent

each altitude profile of the quantity ¥ (e.g., O"concentration) as an expansion in orthogonal

functions, g,(z):

M
=Y 08a(z)+7,(z),  s=1.S,i=1.1 (A1)

m=]

where r,(z,) is the residual, and the coefficientsal , are calculated from

1

DI ACATHEN (A2)

i=1
In principle, any orthogonal set of functions may be used. However, the references cited above
provide an algorithm for finding the set which minimizes the RMS error for a given number of
terms, M <. We summarize the algorithm here.

First define the 7 X I covariance matrix C with elements
1 S
=— > ¥ (z;)¥lz;), i,j=12,...01 Al
S ; S( 1) S( j) .] ( )
Now consider the eigenvalue/eigenvector problemCeo = @L. or

E P = Z 0,0 4k, =0Q,A, (A2)

Jj=1
where ¢ = {(p,}} is the matrix of eigenvectors of C = {Cu} and L = {6 i ]} is a diagonal matrix

whose elements are the corresponding eigenvalues. (The ™ column of ¢ is the eigenvector
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corresponding to the k™ eigenvalue, A,.) By convention, the eigenvectors and eigenvalues are
ordered so that A, >A,>..>A,. Because C is a real symmetric matrix, eigenvectors
~corresponding to unique eigenvalues are guaranteed to be orthogonal [See, e.g., Hildebrand,
1965]. Because of the origin of the matrix C, it is unlikely that any of its eigenvalues will be
degenerate, so we may assume that ¢ is an orthogonal set. According to Secan and Tascione
[1984] and references therein, the set of orthogonal functions that minimizes the RMS error for M
terms is just the first M eigenvectors:

g.(z)=0,, i=12,..[m=12,..M (A3)
These are the Empirical Orthonormal Functions (EOFs).

As a practical matter, we have found that the number of EOFs needed to provide a
reasonably good representation for all the profiles is about 7/6, as illustrated in Table 4 in the main
text. The only exception is the low and midlatitude E layer (NO* and O;), probably because
these databases covered both hemispheres simultaneously. We have also found that substantial
improvement in representation does not occur until the number of EOF% is about /2.
Furthermore, the EOF’s derived for one database were inadequate for any other database, and the
EOF’ simultaneously derived from several databases produce noticeably poorer representations
than those derived for each database individually. Consequently, we have derived separate EOF

sets for each database.

The first nine EOF’ derived from the low latitude F region (O") database for the US
longitude sector, the December solstice, and moderate solar activity, are shown in Figure Al.
The first EOF always has the least structure, and successive EOF’s become progressively more
structured. Although differing in detail, the EOF’s for the other databases are qualitatively

similar.
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Figure Al. The Empirical Orthonormal Functions (EOF’s) for low latitude O" derived from the
LOWLAT output databases for the USA longitude sector, December solstice,
moderate magnetic activity, and moderate solar activity. Only the first nine EOF’s

are plotted because these are the ones used in PIM and PRISM.
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Appendix B. Orthogonal Polynomials of Discrete Variables

Because the databases to which we desire analytic approximations have discrete latitude
grids, we preferred to use polynomials whose orthogonality is defined in terms of that grid, rather
than in terms of integrals over the interval. The algorithm for generating orthogonal polynomials
on a specified grid is given by Beckmann [1973]. Let us denote the desired polynomials by u, (1)
and define u,(A) = 0 and u,(A) = 1. Note that the polynomials are continuous functions of the

continuous variable A even though their orthogonality is defined in terms of the discrete grid

{7» pJ= 1,2,...0 } The recursion relation for the polynomials is

h?.
un+1(l) = (7\‘ - Bn )un(}\') - h2n Uy (7\') (B 1)
n—1
where the norms £, are given by
J
h=>1%)) B2)
j=1
and the recursion constants B, are given by
1 J
B, =?ijun(xj) (B3)

n Jj=1
The polynomials generated by this algorithm may be used to represent the latitude

variations of the Fourier coefficientsa,, and b,, (see main text):

amp(kj,t,) =Zam(t,)un(lj) B4)

buy(2) = 3 By (2 1) ®S)
where

SCOESLY WM A(H ®6)

B, (T)) =£;ibmp(xj,r,)un(xj) (B7)
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Appendix C. F-layer Density Scaling Algorithm and TEC Adjustments

In order to be able to adjust £- and F-layer parameters separately, PRISM uses an altitude
dependent scaling algorithm for each layer. Because the TEC adjustment process is dependent on
the details of the F-layer adjustment process, they are described together.

For altitudes above 4, F, the adjustment is a simple multiplicative scaling:

0 (z) = $,n, z>h F, (C1)
where
NmF(N’W)
SF = —]\722(0{27 (C2)

When N, E"™) is derived from DISS or other ionosonde data, it is simply
N, E™) =124 x10%(£, ) (C3)

where fon(DISS) is the measured value in MHz and Nsz(""“’) is incm ™.

For altitudes below 4 F,, the adjustment is additive and vanishes gradually as z

approaches 4 E.

ngfw)(z) = né‘fd)(z) +An_.(2) (C4)
where
z=h,F, hE —h,Fy
(N, F - N F(""f))exp w_) A w h,E<z<h,F.
An(y(z)—_- mt 2 mt2 (hmE_hmpz) ’ m m'2 (C5)
1-exp| 2+——2—=
w
0, z<h E
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The value of the parameter W is determined by the shape of the bottomside O" density profile,
and is usually of the order of 100 km.

In order to use TEC data, PRISM must convert the TEC measurement into an equivalent
point measurement. TEC data is ingested as vertical equivalent TEC at the Ionospheric
Intersection Point (IIP). If the IIP is farther than 1000 km from the nearest DISS site, then the
TEC is converted into an equivalent N_F,. PRISM converts the observed vertical equivalent

TEC (TEC,,) into an F-layer correction factor that is applied in the same way as the correction

factors derived from DISS (ionosonde) data. First, PRISM calculates a TECv correction as

ATEC = TEC,,. — TEC pgrorq (C6)

The equivalent N__F, correction is determined from

ATEC = [ [n§e)(2) = n5t(2)]dz (C7)
or
A’I‘EC-—-W},ANmF2+SFL: n)(2) dz (C8)
where
R (XY ) )

exp(——————h”‘sz; h”‘E) -1

Therefore, the value of N F"™ corresponding to TEC,,, is

TEC,,, = TEC gy -WLNsz(DM) N Elod)

. (C10)
W,N E ""”+J’ (o) 4, ’

Nsz(m) —

From this point, PRISM treats TEC data as if it were ionosonde data with #_F, missing.
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If the IIP is within 1000 km of a DISS site, then the TEC measurement is converted into
an equivalent SSIES density measurement. First, the Af F, and Ak F, corrections determined
- from the nearest DISS site is applied to the PIM profile at the IIP. Then the topside portion of

the profile is corrected to force agreement with the TEC measurement:

nle)(z) = n () (C11)
z, z<h,F,

= 12

@) {hsz +a(z~h,F,), z>hF, (€12)

where ¢ is a scale factor to be determined from TEC.

The difference in TEC, as defined by Equation 6), is

_f (new) __' e (old)
ATEC= [ nl™dz~ [ ndz (C13)
or
_1-ar ou)
ATEC=—[ _n§"dz (C14)
resulting in
f wF ng’fd)dz
g =— 2t O (C15)

If we identify the scale factora with the ratio (z, ~ ,F,)/(z, — h,F,), then

z,=hF,+(z,-h F,)a (C16)
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N,,=n%(z) (C17)
“and
(C18)

If the IIP is within 1000 km of both a DISS station and a DMSP orbital track, the TEC
measurement is ignored. In a future version of PRISM, in which the plasmasphere is included,

TEC measurements in such situations will be used to constrain theH" density.
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Appendix D. Auroral boundary determination

There are four auroral precipitation boundaries in each hemisphere: The equatorward and

poleward electron boundaries and the equatorward and poleward ion boundaries. Since there are
always two DMSP satellites in orbit, there are potentially four crossings of each boundary. The

specification of a given boundary depends on the number of crossings detected in the data. The

boundary detection is performed as follows.

. If SSJ/4 data are available, then divide each orbit’s worth of data into four segments, each

segment extending from the most equatorward point to the most poleward point.

. Each segment is searched from equator toward the pole until the electron energy flux exceeds

0.25ergcm™ s (for the equatorward electron boundary) and the ion energy flux exceeds

0.1 erg cm™ s (for the equatorward ion boundary).

. Search each segment from pole toward the equator until the same thresholds are exceeded to

establish the poleward boundaries.

The boundaries are always assumed to be circular. The specification of each boundary circle (in

terms of its center and radius) depends on the number of crossings detected.

. If four crossings are found, there are four possible combinations of three points. Each of the

four possible combinations defines a circle, which may be described by its center and radius.

The center coordinates and radii of the four circles are averaged to determine the boundary

used in PRISM.

. If only three crossings are found, the boundary is uniquely defined by the circle passing

through the three points.

. If only two crossings are found, the boundary is taken to be the circle that passes through both

points and has a radius equal to the mean of the colatitudes of the two points.

If only one crossing of a boundary is found, or if no crossings are found (or SSJ/4 data is

missing), the boundaries are determined as follows. Equatorward boundaries are based on an
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analytic representation of the Gussenhoven et al. [1983] boundary. The boundary itself is a circle

whose center is displaced from the magnetic pole. The radius (in degrees) of the circle is
8,(R)=209°+17°P,
where F, is a "precipitation index". The center of the circle is located at
L. (P)=873°-0267°F,

0,,(P)=395-125° P, +0076° P

where A, is magnetic latitude and @, is magnetic local time (in degrees).

Poleward boundaries have almost the same form, except that they are parameterized in

terms of a separate "precipitation index" P,.
0,(P,)=134°+17°P,

(P)= 89.2°+0267°P,, P, <3
277 1908°-0267°F, P23

o, +180°, P,<3
(p02(‘P)= 1 :
(‘pcl’ }32 23

If there is no data, or if no boundaries are detected in the data, thenP, =P, =K ,. However, if a

single crossing is detected, then the precipitation index is chosen so that the above boundary

matches the crossing.
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